疫情之后,实体经济继续处于水深火热之中。生产停摆、收入锐减、资金紧张等多重困难,如何降低企业成本,提高运营效率,是企业必须要去攻克的难题。
人工智能是一个破局点。实现虚拟协作、自动化和自助服务,同时支持对数据、分析和人工智能的日益关注,迫使IT领导者降低IT复杂性并整合其产品。
IBM刚刚发布了Cloud Pak for Data的最新版本3.0版本,它是一个全面集成的数据和AI平台,能够为企业提供现代化的方式,在整个组织中收集、组织和分析数据以及融合AI在业务流程中。这个3.0版本可以支持中文界面,提升了本地用户的使用体验。Cloud Pak for Data基于Red HatOpenShiftContainer Platform而构建,将市场领先的IBM Watson AI技术与IBM混合数据管理平台、数据治理以及业务分析技术结合在一起。通过Cloud Pakfor Data可以节省客户总体拥有成本,同时为人工智能奠定了先进的数据架构基础。它可以灵活地部署在任何公共或私有云上,允许客户选择最适合他们需求的环境,同时避免供应商锁定。事实上,它嵌入并运行在Red Hat OpenShift之上,这意味着它继承了许多云计算固有的优势,包括自动扩展、无缝升级、内置高可用性、通用日志记录等。
1.通过数据虚拟化降低数据存储和移动成本
好文章,需要你的鼓励
Instagram负责人莫塞里在接受采访时透露,平台正考虑引入长视频内容功能,尽管此前一直专注于短视频。他承认为了吸引优质内容,Instagram可能需要支持长视频格式。此外,Meta最近推出了"您的算法"功能,旨在让用户更好地控制信息流内容。莫塞里承诺未来将提供更多工具,让用户主动塑造个性化内容,但完整实现可能需要2-4年时间。
香港大学联合Adobe研究院提出PS-VAE技术,成功解决了AI无法同时具备图像理解和生成能力的难题。通过创新的两阶段训练策略,让AI既能准确理解图片语义,又能生成高质量图像,在图像编辑任务上性能提升近4倍,为统一视觉AI系统开辟新路径,在数字创作、教育、电商等领域具有广阔应用前景。
在信息爆炸的时代,AI实验室的研究员们常常需要面对海量的论文、专利文件、论坛发言等各种渠道的信息。传统的查找方式不仅费时费力,还容易遗漏关键内容。那么,有没有一种方式能让AI真正代替人工,完成从找资料到写出稿的全流程工作?
华中科技大学与马里兰大学研究团队开发出Sage评估框架,首次无需人工标注即可评估AI评判员可靠性。研究发现即使最先进的AI模型在评判任务中也存在严重不一致问题,近四分之一困难情况下无法保持稳定偏好。团队提出明确评判标准和专门微调等改进方法,为构建更可靠AI评估体系提供重要工具。