疫情之后,实体经济继续处于水深火热之中。生产停摆、收入锐减、资金紧张等多重困难,如何降低企业成本,提高运营效率,是企业必须要去攻克的难题。
人工智能是一个破局点。实现虚拟协作、自动化和自助服务,同时支持对数据、分析和人工智能的日益关注,迫使IT领导者降低IT复杂性并整合其产品。
IBM刚刚发布了Cloud Pak for Data的最新版本3.0版本,它是一个全面集成的数据和AI平台,能够为企业提供现代化的方式,在整个组织中收集、组织和分析数据以及融合AI在业务流程中。这个3.0版本可以支持中文界面,提升了本地用户的使用体验。Cloud Pak for Data基于Red HatOpenShiftContainer Platform而构建,将市场领先的IBM Watson AI技术与IBM混合数据管理平台、数据治理以及业务分析技术结合在一起。通过Cloud Pakfor Data可以节省客户总体拥有成本,同时为人工智能奠定了先进的数据架构基础。它可以灵活地部署在任何公共或私有云上,允许客户选择最适合他们需求的环境,同时避免供应商锁定。事实上,它嵌入并运行在Red Hat OpenShift之上,这意味着它继承了许多云计算固有的优势,包括自动扩展、无缝升级、内置高可用性、通用日志记录等。
1.通过数据虚拟化降低数据存储和移动成本
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。