训练复杂的 AI 模型取决于大型和高质量数据集的使用。在企业中,这些数据可能分布在不同的云,应用程序孤岛,不同国家和子公司中的数据中心,因此很难进行合并和分析。不同位置的数据也可能要遵守不同的法规和隐私要求。将数据集中到单个存储库中进行培训通常是不可能或不实际的。解决此问题的一种方法是联邦学习,这是一种分布式机器学习过程,其中,不同的各方协作以共同训练机器学习模型,而无需与其他各方共享训练数据。
联邦学习适合各相关方希望利用其数据而不共享其数据的任何情况。例如,某个航空联盟可能希望针对全球疫情如何影响航班延误进行建模。联邦中的每个参与方都可以使用其数据对公共模型进行训练,而无需移动或共享其数据,从而保留数据隐私和安全性并提高实用性。可以部署生成的模型,以针对评分数据提供更准确的预测,从而为联盟的每个成员提供更佳的结果和洞察。
IBM 联邦学习侧重于企业场景,例如集成数据孤岛,处理客户隐私,法规遵从性以及不同位置的大量数据。在企业环境中,联邦学习过程的参与者通常是数据中心,来自不同提供商的云实例或托管来自现场机器,卡车或其他设备的数据的边缘服务。IBM 联邦学习提供了一种可满足企业网络和安全要求的架构,并和现有框架如 Keras,Tensorflow,SK Learn,RLLib 等集成。
IBM 联邦学习提供了对不同模型类型,神经网络,SVM,决策树,线性以及逻辑回归器和分类器的开箱即用的支持,以及实现它们的许多机器学习库。神经网络通常在本地进行训练,并且聚合器执行模型融合,与本地模型训练相比,这通常是一种更轻量级的操作。
IBM Cloud Pak for Data 的联邦学习技术可以跨多个分散的边缘设备或 具有本地数据集的服务器训练算法,而无需传输它们。数据保持本地状态,并允许执行深度学习算法,同时保留隐私和安全性。这种方法不同于传统的集中式机器学习技术,在传统的集中式机器学习技术中,所有本地数据集均上载到一台服务器,并且在此聚合数据集上执行深度学习 ML 算法。联邦学习使多个参与者可以在不共享数据的情况下构建通用的,健壮的机器学习模型,从而保持数据隐私,数据安全性,数据访问权限和对异构数据的访问。国防,电信,物联网,医疗保健,制造业,零售业和其他许多行业都 使用联邦学习,并从其 AI / ML 中获得可观的附加价值。
上图显示联合方如何发送数据以对公共模型进行训练,而无需相互共享数据。聚集器管理对模型的更新。给定查询 (Q),每个相关方基于其自己的本地数据 (D) 计算一个回复 (R),并将其发送回聚集器,其中各个结果融合在一起作为单个 Federated Learning 模型 (F)。通过 Federated Learning,可以:
从联邦学习解决方案的总价值(总收益–总成本)来看:
1. 总拥有成本(TCO):典型成本包括:硬件和部署的一次性购置成本,以及软件,维护和运营的年度成本。对于没有联邦学习的情况,需要考虑与将数据传输到中央存储库相关的成本。
2. 提高生产率:数据科学家,数据工程师,应用程序开发人员和组织的生产率提高的价值,还应考虑由于联邦学习而与其他异构数据的可用性相关的价值。联邦学习使移动电话可以协作学习共享的预测模型,同时将所有训练数据保留在设备上,从而将进行机器学习的能力与将数据存储在云中的需求脱钩,并且需要考虑与此项创新相关的价值适用案例。
3. 收入/利润:联邦学习的好处是可以访问大量数据,从而提高了机器学习性能,同时尊重数据所有权和隐私。更快的价值和更好的绩效可以带来更大的创新和更好的决策能力,从而刺激增长,增加收入并提高利润。
4. 减轻风险:联邦学习使多个参与者可以建立通用的,健壮的机器学习模型而无需共享数据,从而使用户能够解决关键问题,例如数据隐私,数据安全性,数据访问权限,这也可以改善治理和合规性。
如上所述,联邦学习通过以下方式扩大了 IBM Cloud Pak for Data 的价值:
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。