数据治理的重心,已经从“管”,晋升到“用”,其目的不是为了管好数据,而是为了数据好用和用好数据。数据目录的建设就是体现这一侧重转变的最好说明,为了让各种用户快速方便地查找他所需要的数据,而构建数据资产目录。
其目的是为了用,就需要认真面对一系列的问题,哪些数据需要纳入目录管理?哪些数据是资产?数据资产的价值是否实现?如何评定资产是否被很好的使用起来?建立好目录之后如何使用?
不同的用户,针对不同的数据使用场景会给出不同的答案,但最终的目的都是为了数据治理的成果被使用起来,当然数据治理不是单纯一个数据目录就能实现的,更是和企业的业务流程和治理策略相关的。
数据标准是数据治理中不可少的部分,治理的过程也是落标的过程,其中数据质量和问题的体现,很多情况下并不是数据的问题,而恰恰是数据标准的问题,是定义业务定义和业务规则的质量问题。
数据质量的管理除了对数据进行清洗转换,提升数据质量外,还要进一步促进数据标准的建立和统一,从而逐步减弱和消灭劣质数据,真正从根源提升数据质量,也为后期的数据准备降低清洗和转换工作量。
企业数据环境复杂多样,数据量和新的数据源也层出不穷,单纯靠人力去梳理复杂关系,不仅仅是一个漫长繁重的工作,另外主观的意图和方法还会导致一些重要的信息的缺失和遗漏。自动化的盘点、智能的分析和推荐、自动的比对和关联,自动的关联数据校验,都是治理工作中所迫切需要的,这样的数据治理环境,不仅提升数据管理的层次和水平,也激发参与管理的人员的灵感和创造性,使数据治理逐渐成为一种主动的行为。
数据治理在构建好以数据目录为中心的数据基础后,更要具有给上层分析应用和AI建模等提供数据服务的能力,真正体现数据价值。业务人员、数据分析人员和数据科学家等都可以通过数据目录查看到需要的数据,了解数据轮廓、数据质量,进行数据可视化查看,根据需要进行数据精炼,从而进一步使用数据。
咨询热线:400 668 2350
好文章,需要你的鼓励
后来广为人知的“云上奥运”这一说法,正是从这一刻起走上历史舞台。云计算这一概念,也随之被越来越多的人所熟知。乘云科技CEO郝凯对此深有感受,因为在2017年春节过后不久,他的公司开始成为阿里云的合作伙伴,加入了滚滚而来的云计算大潮中。同一年,郝凯带领团队也第一次参加了阿里云的“双11”活动,实现了800万元的销售业绩。
随着各行各业数字化变革的不断深入,人类社会正加速迈向智能化。作为智能世界和数字经济的坚实底座,数据中心也迎来了蓬勃发展。面