数据治理的重心,已经从“管”,晋升到“用”,其目的不是为了管好数据,而是为了数据好用和用好数据。数据目录的建设就是体现这一侧重转变的最好说明,为了让各种用户快速方便地查找他所需要的数据,而构建数据资产目录。
其目的是为了用,就需要认真面对一系列的问题,哪些数据需要纳入目录管理?哪些数据是资产?数据资产的价值是否实现?如何评定资产是否被很好的使用起来?建立好目录之后如何使用?
不同的用户,针对不同的数据使用场景会给出不同的答案,但最终的目的都是为了数据治理的成果被使用起来,当然数据治理不是单纯一个数据目录就能实现的,更是和企业的业务流程和治理策略相关的。
数据标准是数据治理中不可少的部分,治理的过程也是落标的过程,其中数据质量和问题的体现,很多情况下并不是数据的问题,而恰恰是数据标准的问题,是定义业务定义和业务规则的质量问题。
数据质量的管理除了对数据进行清洗转换,提升数据质量外,还要进一步促进数据标准的建立和统一,从而逐步减弱和消灭劣质数据,真正从根源提升数据质量,也为后期的数据准备降低清洗和转换工作量。
企业数据环境复杂多样,数据量和新的数据源也层出不穷,单纯靠人力去梳理复杂关系,不仅仅是一个漫长繁重的工作,另外主观的意图和方法还会导致一些重要的信息的缺失和遗漏。自动化的盘点、智能的分析和推荐、自动的比对和关联,自动的关联数据校验,都是治理工作中所迫切需要的,这样的数据治理环境,不仅提升数据管理的层次和水平,也激发参与管理的人员的灵感和创造性,使数据治理逐渐成为一种主动的行为。
数据治理在构建好以数据目录为中心的数据基础后,更要具有给上层分析应用和AI建模等提供数据服务的能力,真正体现数据价值。业务人员、数据分析人员和数据科学家等都可以通过数据目录查看到需要的数据,了解数据轮廓、数据质量,进行数据可视化查看,根据需要进行数据精炼,从而进一步使用数据。
咨询热线:400 668 2350
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。