数据治理的重心,已经从“管”,晋升到“用”,其目的不是为了管好数据,而是为了数据好用和用好数据。数据目录的建设就是体现这一侧重转变的最好说明,为了让各种用户快速方便地查找他所需要的数据,而构建数据资产目录。
其目的是为了用,就需要认真面对一系列的问题,哪些数据需要纳入目录管理?哪些数据是资产?数据资产的价值是否实现?如何评定资产是否被很好的使用起来?建立好目录之后如何使用?
不同的用户,针对不同的数据使用场景会给出不同的答案,但最终的目的都是为了数据治理的成果被使用起来,当然数据治理不是单纯一个数据目录就能实现的,更是和企业的业务流程和治理策略相关的。
数据标准是数据治理中不可少的部分,治理的过程也是落标的过程,其中数据质量和问题的体现,很多情况下并不是数据的问题,而恰恰是数据标准的问题,是定义业务定义和业务规则的质量问题。
数据质量的管理除了对数据进行清洗转换,提升数据质量外,还要进一步促进数据标准的建立和统一,从而逐步减弱和消灭劣质数据,真正从根源提升数据质量,也为后期的数据准备降低清洗和转换工作量。
企业数据环境复杂多样,数据量和新的数据源也层出不穷,单纯靠人力去梳理复杂关系,不仅仅是一个漫长繁重的工作,另外主观的意图和方法还会导致一些重要的信息的缺失和遗漏。自动化的盘点、智能的分析和推荐、自动的比对和关联,自动的关联数据校验,都是治理工作中所迫切需要的,这样的数据治理环境,不仅提升数据管理的层次和水平,也激发参与管理的人员的灵感和创造性,使数据治理逐渐成为一种主动的行为。
数据治理在构建好以数据目录为中心的数据基础后,更要具有给上层分析应用和AI建模等提供数据服务的能力,真正体现数据价值。业务人员、数据分析人员和数据科学家等都可以通过数据目录查看到需要的数据,了解数据轮廓、数据质量,进行数据可视化查看,根据需要进行数据精炼,从而进一步使用数据。
咨询热线:400 668 2350
好文章,需要你的鼓励
悉尼大学和微软研究院联合团队开发出名为Spatia的创新视频生成系统,通过维护3D点云"空间记忆"解决了AI视频生成中的长期一致性难题。该系统采用动静分离机制,将静态场景保存为持久记忆,同时生成动态内容,支持精确相机控制和交互式3D编辑,在多项基准测试中表现优异。
33年后,贝尔纳多·金特罗决定寻找改变他人生的那个人——创造马拉加病毒的匿名程序员。这个相对无害的病毒激发了金特罗对网络安全的热情,促使他创立了VirusTotal公司,该公司于2012年被谷歌收购。这次收购将谷歌的欧洲网络安全中心带到了马拉加,使这座西班牙城市转变为科技中心。通过深入研究病毒代码和媒体寻人,金特罗最终发现病毒创造者是已故的安东尼奥·恩里克·阿斯托尔加。
马里兰大学研究团队开发ThinkARM框架,首次系统分析AI推理过程。通过将思维分解为八种模式,发现AI存在三阶段推理节律,推理型与传统AI思维模式差异显著。研究揭示探索模式与正确性关联,不同效率优化方法对思维结构影响各异。这为AI系统诊断、改进提供新工具。