3月4日消息,阿里巴巴宣布完全开源支持10万亿模型的自研分布式深度学习训练框架EPL(Easy Parallel Library,原名whale),进一步完善深度学习生态。

EPL由阿里云机器学习平台PAI团队自主研发,PAI是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、编译优化、推理部署在内的AI开发全链路服务,内置140多种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
EPL是PAI团队一次面向大规模深度学习分布式自动化训练的探索,EPL希望能够简化深度学习模型从单机训练到分布式开发调试的流程。EPL通过对不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略,并进行显存、计算、通信等全方位优化来提供易用、高效的分布式训练框架。
EPL适合不同场景的模型,在阿里巴巴内部已经支持图像、推荐、语音、视频、自然语言、多模态等多样性的业务场景。同时,EPL也支持不同规模的模型,最大完成了10万亿规模的M6模型训练,相比之前发布的大模型GPT-3,M6实现同等参数规模能耗仅为其1%。最新测试结果显示,使用EPL的流水+数据并行对Bert Large模型进行优化,相比于数据并行,训练速度提升了66%。
阿里云资深技术专家九丰表示,“近些年,随着深度学习的火爆,模型的参数规模飞速增长,同时为训练框架带来更大挑战。为应对这个问题,我们研发了EPL,EPL功能也随着业务需求的迭代逐渐完善。未来,我们将在软硬件一体优化、全自动策略探索等几个探索性方向上持续投入精力。今天,我们将EPL完全开源,希望和深度学习训练框架的开发者或深度学习从业者之间有更多更好的交流和共建,持续完善深度学习生态。”
好文章,需要你的鼓励
还在为渲染一个3D模型等上几小时吗?还在纠结移动办公就得牺牲性能吗?当AI遇上专业工作站,传统设计流程的游戏规则正在被改写。
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
据报道,OpenAI正与亚马逊洽谈至少100亿美元的融资。亚马逊此前已是Anthropic的最大投资者,并为其建设了110亿美元的数据中心园区。若融资达成,OpenAI将采用AWS的Trainium系列AI芯片。Trainium3采用三纳米工艺,配备八核心和32MB SRAM内存。AWS可将数千台服务器连接成拥有百万芯片的集群。报道未透露具体估值,但OpenAI最近一次二次出售估值已达5000亿美元。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。