3月4日消息,阿里巴巴宣布完全开源支持10万亿模型的自研分布式深度学习训练框架EPL(Easy Parallel Library,原名whale),进一步完善深度学习生态。
EPL由阿里云机器学习平台PAI团队自主研发,PAI是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、编译优化、推理部署在内的AI开发全链路服务,内置140多种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
EPL是PAI团队一次面向大规模深度学习分布式自动化训练的探索,EPL希望能够简化深度学习模型从单机训练到分布式开发调试的流程。EPL通过对不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略,并进行显存、计算、通信等全方位优化来提供易用、高效的分布式训练框架。
EPL适合不同场景的模型,在阿里巴巴内部已经支持图像、推荐、语音、视频、自然语言、多模态等多样性的业务场景。同时,EPL也支持不同规模的模型,最大完成了10万亿规模的M6模型训练,相比之前发布的大模型GPT-3,M6实现同等参数规模能耗仅为其1%。最新测试结果显示,使用EPL的流水+数据并行对Bert Large模型进行优化,相比于数据并行,训练速度提升了66%。
阿里云资深技术专家九丰表示,“近些年,随着深度学习的火爆,模型的参数规模飞速增长,同时为训练框架带来更大挑战。为应对这个问题,我们研发了EPL,EPL功能也随着业务需求的迭代逐渐完善。未来,我们将在软硬件一体优化、全自动策略探索等几个探索性方向上持续投入精力。今天,我们将EPL完全开源,希望和深度学习训练框架的开发者或深度学习从业者之间有更多更好的交流和共建,持续完善深度学习生态。”
好文章,需要你的鼓励
这项由浙江大学与阿里巴巴通义实验室联合开展的研究,通过创新的半在线强化学习方法,显著提升了AI界面助手在多步骤任务中的表现。UI-S1-7B模型在多个基准测试中创造了7B参数规模的新纪录,为GUI自动化代理的发展开辟了新的技术路径。
阿里巴巴联合浙江大学开发的OmniThink框架让AI学会像人类一样慢思考写作。通过信息树和概念池的双重架构,系统能够动态检索信息、持续反思,突破了传统AI写作内容浅薄重复的局限。实验显示该方法在文章质量各维度均显著超越现有最强基线,知识密度提升明显,为长文本生成研究开辟了新方向。
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
腾讯混元3D 2.0是一个革命性的3D生成系统,能够从单张图片生成高质量的带纹理3D模型。该系统包含形状生成模块Hunyuan3D-DiT和纹理合成模块Hunyuan3D-Paint,采用创新的重要性采样和多视角一致性技术,在多项评估指标上超越现有技术,并提供用户友好的制作平台。作为开源项目,它将大大降低3D内容创作门槛,推动3D技术的普及应用。