9月1日,华为轮值董事长胡厚崑在2022世界人工智能大会上表示,人工智能触发的产业变革正在改变每一个行业,人工智能也在越来越多的行业场景发挥重要价值。大模型将为人工智能的行业实践提供牵引,加速行业应用的孵化与创新。

华为轮值董事长胡厚崑发表主题演讲
大模型落地药物研发领域,加速超级抗菌药Drug X的研发进程
胡厚崑分享了AI在医药领域的应用案例。当前,耐药细菌已经成为人类重大健康威胁。据世卫组织统计,全球每年至少有70万人因此死亡。面对突发或顽固性疾病,我们通常迟迟等不到新药上市。新药研发及上市进程受医药界公认的“双10定律”制约——一款创新药从研发到上市,平均成本超过10亿美元、研发周期大于10年。
西安交通大学第一附属医院(以下简称西安交大一附院)刘冰教授在新药研发的工作中采用了基于华为云盘古药物分子大模型打造的AI辅助药物设计服务,突破性地研发出一款超级抗菌药Drug X并打破了医药界“双十定律”。Drug X有望成为全球近40年来首个新靶点、新类别的抗生素,其靶点特质决定了细菌将难以对Drug X产生耐药性,对抗疟(即疟原虫)药物研发等多个领域有着重要的影响。华为云盘古药物分子大模型让先导药的研发周期从数年缩短至一个月,研发成本降低70%。
华为云盘古药物分子大模型让AI全流程辅助药物设计
科研成果的突破离不开技术的加持。华为云盘古药物分子大模型在“药物分子筛选”和“药物分子优化”两大环节对Drug X的研发具备重要作用。
·辅助科研人员对小分子化合物进行预筛选,大幅减少新药研发的成本
药物研发平均周期超过10年,其中先导药物的设计历时3-5年。科研人员需要反复对不同小分子化合物进行结合实验、结构修改及效果验证,以找到能够研制成超级抗菌药的最理想的小分子化合物。在数以亿计的小分子化合物面前,人工筛选方式不仅试错成本高,而且高度依赖药物学专家的经验。
华为云盘古药物分子大模型学习了17亿个小分子的化学结构,在无监督学习模式和业界独有的“图-序列不对称条件自编码器”深度学习网络架构下,更好地对分子结构与性质进行预测与推荐。在盘古药物分子大模型优先推荐的小分子化合物基础上,科研人员进一步进行人工实验验证。实验结果表明,盘古药物分子大模型的成药性预测准确率比传统方式高20%,进而提升研发效率,让先导药的研发周期从数年缩短至一个月,同时降低70%的研发成本。
·对筛选后的先导药进行定向优化,帮助降低新药的毒副作用
部分小分子化合物具备与人体细胞相结合的属性,将对正常细胞产生毒副作用。基于华为云盘古药物分子大模型的结构优化器,刘冰教授有效地提升了小分子化合物与目标抗菌靶点蛋白的结合、降低与人体蛋白的结合,从而减弱了超级抗菌药对人体正常细胞可能产生的毒副作用。
规划大模型沙盘,牵引创新方向
AI大模型具备“一个模型在众多场景通用、可泛化和规模化复制”的特点,如今孵化大模型已经成为行业与场景创新突破的共识。
胡厚崑提出,要汇聚各方力量,梳理行业场景所需的基础大模型与行业大模型,共同规划大模型沙盘,避免重复投资与开发,集中优势资源共同加速AI应用向各产业和行业的渗透。
华为云盘古预训练大模型已完成从学术大模型到产业大模型的转变,形成了“基础大模型-行业大模型-细分场景大模型”的发展路径,并且在医疗、互联网、金融、煤矿、农业、气象等领域中实现降本增效。
本次会上,基于华为云盘古预训练大模型打造的华为云AI辅助药物设计平台(Huawei Cloud AI Drug Design Platform)获得了“SAIL之星”奖项,作为国内首个商用的AI辅助制药SaaS平台,帮助药企减少试错成本,加速新药研发进程。
华为云将持续打牢技术根基,将AI技术以及行业落地经验云化、服务化,不断繁荣人工智能产业生态,让企业创新触手可及。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。