近日,阿里云机器学习 PAI 开源框架 EasyNLP进行升级发布,推出了融合了丰富电商场景知识的CLIP模型,在电商文图检索效果上刷新了SOTA结果,并且将上述模型免费开源,贡献给开源社区。
CLIP(Contrastive Language-Image Pre-training)是一种经典的文图跨模态检索模型,它在大规模图文数据集上进行了对比学习预训练,具有很强的文图跨模态表征学习能力。EasyNLP借鉴CLIP的轻量化、易迁移的预训练架构,构建基于CLIP包含图像和文本Encoder两部分的双流模型,同时基于商品数据,以优化电商场景的文图检索优化。
Fashion-Gen数据集是一个大规模的时尚场景的图文数据集,以Fashion-Gen数据集为例,EasyNLP基于pai-clip-commercial-base-en和pai-clip-commercial-large-en这两个模型在Fashion-Gen数据集上进行了20个epoch的微调。实验结果表明,相比于现公布的SOTA模型(CommerceMM),电商CLIP-large模型在文到图和图到文的检索结果上均有显著提升,评测指标最高提升了8.7~15个百分点。
除此之外,电商base模型在文到图与CommerceMM相当检索结果下,使用了更少的参数量。由此可见,电商CLIP无论在large还是base图像Encoder的设置下,都取得了有竞争力的电商场景跨模态检索能力。
文到图检索评测结果
图到文检索评测结果
目前,电商CLIP可在EasyNLP中直接安装使用,在未来,EasyNLP框架会集成更多NLP的多模态的知识模型,覆盖各个常见领域和任务,同时也将集成更多SOTA模型(特别是中文模型),来支持各种NLP和多模态任务,共建NLP和多模态算法库。
Github地址:https://github.com/alibaba/EasyNLP
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。