5月29日,2023中国算力发展研讨会在中科院计算所召开。
此次研讨会以ChatGPT下算力的机遇与挑战为主题,汇集了包括中国科学院院士陈润生、钱德沛,中国工程院院士郑纬民、廖湘科,北京应用物理与计算数学研究所研究员袁国兴,中国信通院院长、党委副书记余晓晖,国家信息中心信息化和产业发展部主任单志广,中科院计算所研究员张云泉,清华大学教授陈文光,中科院计算机网络信息中心研究员陆忠华,国家高性能计算机工程技术研究中心副主任曹振南在内的多位业内权威专家与学者,从技术、生态等多维度展开深度交流研讨,厘清算力产业的发展风向,并就当下人工智能基础设施及算力服务建设等课题给出应对之策。

算力基础建设的关键在于“通专”结合
今年以来,ChatGPT概念持续走红,进一步加速AI技术与千行百业的融合进程。愈发多元、复杂的应用场景涌现,对计算能力提出了前所未有的需求。与此同时,人工智能算力基础设施作为算力供给的重要引擎,也在建设布局等方面迎来“大考”。
目前,全国有超过30个城市正在建设或提出建设智算中心,基本都是采用“政府主导、企业承建、联合运营“的模式。即由地方财政统一出资,建成后为各行各业提供公共算力服务。在此模式下,智算中心定位于公共服务设施,首先要满足广泛的应用场景,具备普适性,实现通用。其次,也要能支持部分对于计算精度、效率要求高的个性化应用场景,具备高效性,实现专用。
与会专家一致认为,“通专”结合将成为人工智能算力基础设施的建设关键,并基于此给出两条核心建设路径。一是,算力的融合。人工智能算力基础设施应具备全精度算力,成为一个算力“通才”。让用户可以根据 AI for Science、AI for industries等实际应用场景调配算力资源,包括通用算力、专用算力,乃至高性能的算力,来支持自身业务的发展。二是,生态的融合。“通专”结合的人工智能算力基础设施是一套综合性方案,更考验底层架构的开放性。既需要不同技术路线的百花齐放,也需要殊途同归的适配兼容,以便形成包罗万象的整体架构。在降低应用迁移门槛的同时,也带动产业生态的发展。
算力网络不止于连接资源,更在于连接生态
此外,在ChatGPT的爆火下,行业与区域算力分布不均问题日益凸显,算力网络的发展也成为当下备受瞩目的话题。
与会专家在探讨中认为,其依托计算和网络两大IT与CT基础设施,让用户便捷化地使用到算力资源。对于算力网络建设而言,将遍布全国的各类型计算中心统一管理调度,实现对算力、存储、网络以及数据等分布资源的整合,只是初级阶段。更重要的建设环节,在于整个产业生态的深层连接,即连接人、连接应用和服务。
超算互联网作为算力网络的重要形态,从实践层面诠释了算力网络的建设本质。首先是狭义的互联,即在物理层面,连接不同体系架构的算力中心,构建可以统一使用、对外服务的基础设施,实现资源的调度、共享。其次是广义的互联,即在生态层面,以互联网的思维运营超算中心,基于计算、软件、应用解决方案等资源进行深度整合,建立一个以应用服务为主导的创新型平台,并通过市场化的运营和服务体系,紧密链接上下游,使供需方快速对接,快速找到各自需要的资源。
通过物理及生态层面的双重互联,算力网络可进一步使能算力服务,合理配置、融合、释放算力,降低应用门槛。让算力资源从高不可攀的技术变成普适普惠的服务,支撑国家重大的科研项目、社会民生以及千行百业的发展。
好文章,需要你的鼓励
美国多州和部分国家要求特定应用进行年龄验证,澳大利亚已禁止16岁以下用户使用社交媒体。新提案《应用商店问责法案》建议由苹果和谷歌负责统一验证用户年龄,而非各开发者单独验证。这将提升用户体验,用户只需向苹果或谷歌验证一次身份。凭借苹果在隐私保护方面的优势,该方案可扩展至Safari浏览器,为需要年龄验证的网站提供确认信息,而无需透露用户个人数据。
Meta AI首次发布多模态奖励评估基准MMRB2,专门评价AI同时处理文字和图像的能力。该基准包含四大任务类型共4000个专家标注样本,测试23个先进模型。结果显示最佳模型Gemini 3 Pro达75-80%准确率,仍低于人类90%水平。研究揭示AI评价存在视觉偏见等问题,为多模态AI发展提供重要参考标准。
AI编程助手Cursor背后的公司Anysphere宣布收购AI代码审查工具初创公司Graphite。据报道收购价远超Graphite今年早些时候B轮融资时2.9亿美元的估值。此次收购具有战略意义,将AI代码生成与AI代码审查工具相结合,可大幅提升从编写到交付的整体效率。Anysphere估值已达290亿美元,近期频繁收购,上月收购技术招聘公司,今年7月还收购AI客户关系管理初创公司Koala的团队。
快手推出的Kling-Omni是首个真正统一的AI视频制作系统,能够理解文字、图像、视频等多种输入方式,不仅可以生成视频,还能进行复杂编辑和推理。该系统通过三个核心模块的协作,实现了从创意理解到最终输出的全流程自动化,让普通用户也能制作专业水准的视频内容,代表了AI视频技术的重要突破。