近日,阿里云机器学习平台PAI和北京大学杨智老师团队合作的论文《GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning》被SIGMOD 2023录用。论文通过对深度学习数据预处理流水线的弹性伸缩,大幅提升了训练性能和集群资源利用效率。
SIGMOD是数据库与数据管理系统领域的国际顶级会议,自1975年首次举办以来,一直对数据管理、存储和处理的发展起着深刻的推动作用,在学术和工业界均有巨大影响力。SIGMOD也重视数据管理系统与其他方向的交叉,尤其近年来也对机器学习和人工智能领域格外关注。此次入选意味着阿里云机器学习平台PAI在深度学习数据处理方向达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。
近年来,随着GPU加速器的不断进化,以及各类软件优化技术的层出不穷,深度学习训练的计算效率正不断被提升到新的层次。但与此同时,深度学习本质上仍是一种多阶段、多资源的任务类型:不仅需要在GPU上进行大量的训练计算,同时往往也需要CPU端的数据预处理流水线(如数据增强、特征转换等),这类预处理计算是训练出高质量模型的必要步骤。因此,GPU端训练性能的提升也带来了更大的数据预处理压力,使后者成为新的性能瓶颈。
针对这一问题,在观察后发现数据预处理流水线具有无状态的特点,具有内在的资源弹性。基于此,GoldMiner将数据预处理流水线和模型训练部分分离执行,通过自动计算图分析来识别无状态的数据预处理计算,并对其实现高效的并行加速和弹性伸缩,从而缓解数据预处理瓶颈,提升训练性能。通过与集群调度器的协同设计,GoldMiner进一步发挥了数据预处理计算的资源弹性,大幅提升集群调度效率。实验显示GoldMiner可提升训练性能最高达12.1倍,提升GPU集群利用率达2.5倍。
目前阿里云机器学习平台 PAI正在将GoldMiner与PAI-DLC集成,以向用户提供数据预处理加速能力。机器学习平台PAI面向企业客户及开发者,提供轻量化、高性价比的云原生机器学习,涵盖PAI-DSW交互式建模、PAI-Designer可视化建模、PAI-DLC分布式训练到PAI-EAS模型在线部署的全流程。其中PAI-DLC提供了云原生一站式的深度学习训练平台,提供灵活、稳定、易用和高性能的机器学习训练环境。支持多种算法框架,超大规模分布式深度学习任务运行及自定义算法框架,为开发者和企业降本增效。
论文名字:GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning论文作者:赵汉宇,杨智,程羽,田超,任仕儒,肖文聪,袁满,陈浪石,刘恺博,张杨,李永,林伟论文pdf链接:https://dl.acm.org/doi/pdf/10.1145/3589773
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。