近日,阿里云机器学习平台PAI和北京大学杨智老师团队合作的论文《GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning》被SIGMOD 2023录用。论文通过对深度学习数据预处理流水线的弹性伸缩,大幅提升了训练性能和集群资源利用效率。

SIGMOD是数据库与数据管理系统领域的国际顶级会议,自1975年首次举办以来,一直对数据管理、存储和处理的发展起着深刻的推动作用,在学术和工业界均有巨大影响力。SIGMOD也重视数据管理系统与其他方向的交叉,尤其近年来也对机器学习和人工智能领域格外关注。此次入选意味着阿里云机器学习平台PAI在深度学习数据处理方向达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。
近年来,随着GPU加速器的不断进化,以及各类软件优化技术的层出不穷,深度学习训练的计算效率正不断被提升到新的层次。但与此同时,深度学习本质上仍是一种多阶段、多资源的任务类型:不仅需要在GPU上进行大量的训练计算,同时往往也需要CPU端的数据预处理流水线(如数据增强、特征转换等),这类预处理计算是训练出高质量模型的必要步骤。因此,GPU端训练性能的提升也带来了更大的数据预处理压力,使后者成为新的性能瓶颈。
针对这一问题,在观察后发现数据预处理流水线具有无状态的特点,具有内在的资源弹性。基于此,GoldMiner将数据预处理流水线和模型训练部分分离执行,通过自动计算图分析来识别无状态的数据预处理计算,并对其实现高效的并行加速和弹性伸缩,从而缓解数据预处理瓶颈,提升训练性能。通过与集群调度器的协同设计,GoldMiner进一步发挥了数据预处理计算的资源弹性,大幅提升集群调度效率。实验显示GoldMiner可提升训练性能最高达12.1倍,提升GPU集群利用率达2.5倍。
目前阿里云机器学习平台 PAI正在将GoldMiner与PAI-DLC集成,以向用户提供数据预处理加速能力。机器学习平台PAI面向企业客户及开发者,提供轻量化、高性价比的云原生机器学习,涵盖PAI-DSW交互式建模、PAI-Designer可视化建模、PAI-DLC分布式训练到PAI-EAS模型在线部署的全流程。其中PAI-DLC提供了云原生一站式的深度学习训练平台,提供灵活、稳定、易用和高性能的机器学习训练环境。支持多种算法框架,超大规模分布式深度学习任务运行及自定义算法框架,为开发者和企业降本增效。
论文名字:GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning论文作者:赵汉宇,杨智,程羽,田超,任仕儒,肖文聪,袁满,陈浪石,刘恺博,张杨,李永,林伟论文pdf链接:https://dl.acm.org/doi/pdf/10.1145/3589773
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
这项由清华大学和字节跳动联合开展的研究首次实现了高保真视频换脸技术的重大突破。DreamID-V框架通过创新的身份锚定视频合成器和多模态条件注入机制,成功解决了传统视频换脸技术中身份相似度低、时间不连贯等核心问题,在保持原视频动作表情的同时实现完美的身份替换,为影视制作、创意设计等领域带来革命性变化。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
阿尔伯塔大学研究团队开发出名为Gnosis的AI自我检查系统,能让人工智能实时监测自己的内部"思维状态",判断答案可靠性。该系统通过分析AI的隐藏状态和注意力模式,在数学推理任务中达到95%准确率,超越传统方法和大型审核模型,且仅需500万参数。更重要的是,它能在AI回答40%时就预测最终答案质量,支持早期错误检测,为构建更诚实可靠的AI系统开辟了新路径。