英特尔研究院宣布与Blockade Labs合作发布LDM3D(Latent Diffusion Model for 3D)模型,这一全新的扩散模型使用生成式AI创建3D视觉内容。LDM3D是业界领先的利用扩散过程(diffusion process)生成深度图(depth map)的模型,进而生成逼真的、沉浸式的360度全景图。LDM3D有望革新内容创作、元宇宙应用和数字体验,改变包括娱乐、游戏、建筑和设计在内的许多行业。
英特尔研究院人工智能和机器学习研究专家Vasudev Lal表示:“生成式AI技术旨在提高和增强人类创造力,并节省时间。然而,目前的大部分生成式AI模型仅限于生成2D图像,仅有少数几种可根据文本提示生成3D图像。在使用几乎相同数量参数的情况下,不同于现存的潜在扩散模型,LDM3D可以根据用户给定的文本提示同时生成图像和深度图。与深度估计中的标准后处理方法相比,LDM3D能够为图像中的每个像素提供更精准的相对深度,并为开发者省去了大量用于场景开发的时间。”
封闭的生态系统限制了规模。英特尔致力于推动AI的真正普及,通过开放的生态系统让更多人从这项技术中受益。计算机视觉领域近年来取得了重大进展,特别是在生成式AI方面。然而,当今许多先进的生成式AI模型只能生成2D图像。与通常只能根据文本提示生成2D RGB图像的现有扩散模型不同,LDM3D可以根据用户给定的文本提示同时生成图像和深度图。与深度估计(depth estimation)中的标准后处理(post-processing)方法相比,LDM3D在使用与潜在扩散模型Stable Diffusion几乎相同数量参数的情况下,能够为图像中的每个像素提供更精准的相对深度(relative depth)。
这项研究有望改变我们与数字内容的互动方式,基于文本提示为用户提供全新的体验。LDM3D生成的图像和深度图能够将诸如宁静的热带海滩、摩天大楼、科幻宇宙等文本描述转化为细致的360度全景图。LDM3D捕捉深度信息的能力,可以即时增强整体真实感和沉浸感,使各行各业的创新应用成为可能,包括娱乐、游戏、室内设计、房产销售 ,以及虚拟博物馆与沉浸式VR体验等。
6月20日,在IEEE/CVF计算机视觉和模式识别会议(CVPR)的3DMV工作坊上,LDM3D模型获得了“Best Poster Award”
LDM3D是在LAION-400M数据集包含一万个样本的子集上训练而成的。LAION-400M是一个大型图文数据集,包含超过4亿个图文对。对训练语料库进行标注时,研究团队使用了之前由英特尔研究院开发的稠密深度估计模型DPT-Large,为图像中的每个像素提供了高度准确的相对深度。LAION-400M数据集是基于研究用途创建而成的,以便广大研究人员和其它兴趣社群能在更大规模上测试模型训练。
LDM3D模型在一台英特尔AI超级计算机上完成了训练,该超级计算机由英特尔®至强®处理器和英特尔®Habana Gaudi® AI加速器驱动。最终的模型和流程整合了RGB图像和深度图,生成360度全景图,实现了沉浸式体验。
为了展示LDM3D的潜力,英特尔和Blockade的研究人员开发了应用程序DepthFusion,通过标准的2D RGB图像和深度图创建沉浸式、交互式的360度全景体验。DepthFusion利用了TouchDesigner,一种基于节点的可视化编程语言,用于实时互动多媒体内容,可将文本提示转化为交互式和沉浸式数字体验。LDM3D是能生成RGB图像及其深度图的单一模型,因此能够节省内存占用和降低延迟。
LDM3D和DepthFusion的发布,为多视角生成式AI和计算机视觉的进一步发展铺平了道路。英特尔将继续探索如何使用生成式AI增强人类能力,并致力于打造一个强大的开源AI研发生态系统,让更多人能够使用AI技术。延续英特尔对开放AI生态系统的大力支持,LDM3D正在通过HuggingFace进行开源,让AI研究人员和从业者能对这一系统作出进一步改进,并针对特定应用进行微调。
在2023年6月18日至22日举行的IEEE/CVF计算机视觉和模式识别会议上,英特尔将发表这项研究成果。欲了解更多信息,请参考论文《LDM3D: Latent Diffusion Model for 3D》。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。