近日,阿里云机器学习 PAI 开源框架 EasyNLP进行升级发布,推出了融合了丰富电商场景知识的CLIP模型,在电商文图检索效果上刷新了SOTA结果,并且将上述模型免费开源,贡献给开源社区。
CLIP(Contrastive Language-Image Pre-training)是一种经典的文图跨模态检索模型,它在大规模图文数据集上进行了对比学习预训练,具有很强的文图跨模态表征学习能力。EasyNLP借鉴CLIP的轻量化、易迁移的预训练架构,构建基于CLIP包含图像和文本Encoder两部分的双流模型,同时基于商品数据,以优化电商场景的文图检索优化。
Fashion-Gen数据集是一个大规模的时尚场景的图文数据集,以Fashion-Gen数据集为例,EasyNLP基于pai-clip-commercial-base-en和pai-clip-commercial-large-en这两个模型在Fashion-Gen数据集上进行了20个epoch的微调。实验结果表明,相比于现公布的SOTA模型(CommerceMM),电商CLIP-large模型在文到图和图到文的检索结果上均有显著提升,评测指标最高提升了8.7~15个百分点。
除此之外,电商base模型在文到图与CommerceMM相当检索结果下,使用了更少的参数量。由此可见,电商CLIP无论在large还是base图像Encoder的设置下,都取得了有竞争力的电商场景跨模态检索能力。
文到图检索评测结果
图到文检索评测结果
目前,电商CLIP可在EasyNLP中直接安装使用,在未来,EasyNLP框架会集成更多NLP的多模态的知识模型,覆盖各个常见领域和任务,同时也将集成更多SOTA模型(特别是中文模型),来支持各种NLP和多模态任务,共建NLP和多模态算法库。
Github地址:https://github.com/alibaba/EasyNLP
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。