在模型选择方面——每年工业界与学术界都会提出大量的模型,不同模型有什么优势,什么样的模型适合自己,厂商在挑选合适的模型上存在挑战。
在模型训练方面——大多数模型更侧重于算法的实现,关注易用性和模型的精度,往往忽略了模型吞吐,没有实现生产环境下的训练加速最优,GPU利用率也很低。
这导致了车厂的研发容易成本居高不下,模型落地周期越长,车辆也无法及时获得最新的AI能力。
针对这两大难题,百度智能云联合NVIDIA,根据双方在自动驾驶行业丰富的实践经验,首批精选了17个模型,包括了2D、3D摄像头、雷达等多种传感设备,为车辆提供覆盖自适应巡航、碰撞检测、紧急制动、交通信号灯检车、车道偏离识别、环绕视图、盲点探索、后方碰撞警告等能力。
在模型优化方面,百度智能云技术团队联合 NVIDIA,针对常见智驾场景的感知模型,从数据 I/O 开销、模型计算开销、损失函数计算开销、优化器开销、分布式通信开销等角度进行全面深入分析,结合硬件集群和模型结构等因素,在 GPU 卡上联合 NVIDIA 进行了软硬一体优化,让算法与GPU配合更加默契,最终模型优化实现了平均138%,最高400%的吞吐量提升。
汽车厂商可以直接使用这些模型加速训练,将获得的最新AI能力同步至车辆。现在已经有客户开始将这些优化后的模型投入到业务流程中。
在优化的过程中,百度智能云技术团队不断尝试各种手段来提高模型吞吐量和资源的利用率。比如,在CenterPoint的模型优化中吞吐效果经历了从50%、到169%,再到391%的提升,最终实现了目前400%的吞吐提升,训练时间缩短80%。
在模型优化的过程中,百度智能云联合NVIDIA提炼出了一套通用的模型优化方法论,可以帮助团队在短时间内完成新模型的优化工作。
NVIDIA 开发与技术部总经理李曦鹏说:“汽车智能化刚刚开始,如何构建自动驾驶端到端的模型生产和上线迭代的闭环能力,将成为自驾领域客户的核心竞争力之一。NVIDIA 和百度智能云针对自驾常用的17个模型做的极致优化,加速自动驾驶汽车的研发和商用。为了满足更多模型的需求,相关训练加速的技术手段也会集成到百度百舸的AI加速套件中。”
百度副总裁谢广军表示:“云智一体,深入产业”,模型训练是自动驾驶领域的核心场景。百度智能云联合 NVIDIA 对17个感知模型的训练进行了优化,最高可达到400%的训练吞吐提升,缩短80%的训练时间。双方沉淀的优化方法还将帮助更多行业提升模型训练效率,加速产业智能化升级。”
好文章,需要你的鼓励
OpenAI于周二发布AI浏览器ChatGPT Atlas,目标是让ChatGPT成为搜索和问答的首选界面而非谷歌。该浏览器目前仅支持Mac,但正在开发Windows、iOS和Android版本。Atlas将ChatGPT设为默认搜索选项,并具备记忆功能,可结合浏览历史提供个性化答案。与其他AI浏览器不同,Atlas更专注于强化ChatGPT生态系统,为OpenAI提供更多用户数据和分发控制权,而非改善传统浏览体验。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
通用汽车宣布计划于2028年推出自动驾驶系统,允许驾驶员双眼离开道路、双手离开方向盘,首先应用于凯迪拉克Escalade IQ。该系统基于现有Super Cruise技术,采用激光雷达、雷达和摄像头感知技术,初期在高速公路使用。通用整合了已关闭的Cruise子公司的技术栈,包括基于500万英里无人驾驶数据训练的AI模型。目前美国仅奔驰拥有商用L3级自动驾驶系统。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。