近日,由IEEE可靠性协会主办的全球性专业会议ICPHM 2022 上,阿里云IoT平台数据分析团队发布名为An Integration of Spectrum Analysis and Attention- based Network for Condition Monitoring of Vibration Components论文,提出了SOTA级(行业领先)高精度故障诊断算法,刷新工业振动设备故障诊断精准度,显著提升设备运维效率。
作为工程学科的全球性专业会议,ICPHM已经连续举办了13届。在会议上发表的论文需要经过严格评审,文章录用且受邀会议演讲的比例不到30%,被收录的论文将在IEEE Explore上发表。
此次阿里云IoT发布的论文提出SOTA级振动故障诊断算法,对于减小非计划停机和降低运维成本有较大的价值。
在工业设备中由振动引起的故障,占所有故障的60%以上。而磨损、裂纹等轻微故障,往往宏观表征微弱,仅靠人工无法有效辨识,开展基于振动信号的状态监控可以有效跟踪并发现设备早期故障,减小非计划停机和运维成本,提高设备安全性和排故效率。
阿里云IoT的SOTA级算法通过融合领域知识和深度学习网络,相比直接使用原始时序信号或快速傅立叶变换得到的频谱,基于welch方法获得功率谱估计有助于抑制噪声,提升网络的特征提取效果;
基于一维双卷积网络和多头自注意力机制的轻量深度网络结构,可以融合多测点信号数据,相比现有的各种复杂多层网络,如ResNet等,在不降低模型识别效果的同时减小了模型大小,提升了计算效率。
此外,此套算法用一个模型适配多个场景,在轴承、齿轮等各类工况下都有出色的诊断效果。
IEEE专家评审意见认为,阿里云IoT故障诊断算法提出了一套端到端的诊断与状态识别流程,并且实验效果优越。
论文主要作者,阿里云IoT平台算法工程师陈曦表示,振动故障算法将与阿里云物联网平台、数字工厂等产品深度结合,为用户提供高精准度的预测性设备维护。
据了解,阿里云物联网平台已经服务近十万家企业,大量设备上云产生海量数据,为了帮助用户用好这些数据,阿里云IoT在数据分析平台上提供了包括故障诊断算法、生产过程分析等在内的五大类数据分析算法,API日调用量已达5O多万次。
好文章,需要你的鼓励
华盛顿大学Pedro Domingos教授提出的张量逻辑是一种革命性的AI编程语言,它通过将逻辑推理与张量代数在数学层面统一,实现了符号AI和神经网络的深度融合。该语言仅使用张量方程这一种构造,就能优雅地实现从Transformer到形式推理、从核机器到图模型等多种AI范式,更重要的是开辟了在嵌入空间中进行可靠推理的新方向,有望解决大型语言模型的幻觉和不透明性问题,成为推理、数学和编码模型的理想语言。
中科院研究团队发现AI模型存在严重的跨语言推理缺陷:英语训练优秀的模型在其他语言上表现平平。研究揭示了三个重要规律:首次平行跃迁现象、平行扩展法则和单语言泛化差距,证明当前AI过度依赖英语特有模式而非通用推理能力。通过"并行训练"策略,仅增加一种平行语言就能将跨语言能力提升115%,为构建真正全球化AI系统指明方向。
科技巨头IBM今日宣布推出新的区块链数字资产平台,专为金融机构和受监管企业设计。该平台名为"数字资产避风港",将为银行、企业和政府提供比特币、以太坊、稳定币和代币化资产的安全管理服务。平台由IBM与数字钱包基础设施提供商Dfns合作开发,支持超过40个公链和私链的全生命周期管理,并集成第三方身份验证和反洗钱合规工具。
卡内基梅隆大学和斯坦福大学研究团队提出RLAD方法,让AI学会像人类一样先从解题过程中总结经验,再运用这些"推理抽象"指导解题。该方法使用双AI协作训练,在AIME 2025等数学竞赛中比传统方法提升44%准确率,甚至实现了弱AI指导强AI的现象,为构建更智能的AI系统提供了新思路。