近日,由IEEE可靠性协会主办的全球性专业会议ICPHM 2022 上,阿里云IoT平台数据分析团队发布名为An Integration of Spectrum Analysis and Attention- based Network for Condition Monitoring of Vibration Components论文,提出了SOTA级(行业领先)高精度故障诊断算法,刷新工业振动设备故障诊断精准度,显著提升设备运维效率。
作为工程学科的全球性专业会议,ICPHM已经连续举办了13届。在会议上发表的论文需要经过严格评审,文章录用且受邀会议演讲的比例不到30%,被收录的论文将在IEEE Explore上发表。
此次阿里云IoT发布的论文提出SOTA级振动故障诊断算法,对于减小非计划停机和降低运维成本有较大的价值。
在工业设备中由振动引起的故障,占所有故障的60%以上。而磨损、裂纹等轻微故障,往往宏观表征微弱,仅靠人工无法有效辨识,开展基于振动信号的状态监控可以有效跟踪并发现设备早期故障,减小非计划停机和运维成本,提高设备安全性和排故效率。
阿里云IoT的SOTA级算法通过融合领域知识和深度学习网络,相比直接使用原始时序信号或快速傅立叶变换得到的频谱,基于welch方法获得功率谱估计有助于抑制噪声,提升网络的特征提取效果;
基于一维双卷积网络和多头自注意力机制的轻量深度网络结构,可以融合多测点信号数据,相比现有的各种复杂多层网络,如ResNet等,在不降低模型识别效果的同时减小了模型大小,提升了计算效率。
此外,此套算法用一个模型适配多个场景,在轴承、齿轮等各类工况下都有出色的诊断效果。
IEEE专家评审意见认为,阿里云IoT故障诊断算法提出了一套端到端的诊断与状态识别流程,并且实验效果优越。
论文主要作者,阿里云IoT平台算法工程师陈曦表示,振动故障算法将与阿里云物联网平台、数字工厂等产品深度结合,为用户提供高精准度的预测性设备维护。
据了解,阿里云物联网平台已经服务近十万家企业,大量设备上云产生海量数据,为了帮助用户用好这些数据,阿里云IoT在数据分析平台上提供了包括故障诊断算法、生产过程分析等在内的五大类数据分析算法,API日调用量已达5O多万次。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。