生成式AI(AIGC)无疑是当下最热门的话题和应用,各家软硬件厂商都在全力投入。
作为拥有强大硬件、广泛生态的行业领袖,Intel也正在大力推动PC AIGC应用的落地,从硬件到软件提供全方位支持。
目前在PC平台上,Intel已发布的12/13代酷睿、Arc A系列显卡,以及即将发布的下一代酷睿,都能满足AIGC对于高算力的需求。
再加上软件生态的构建和模型的优化,AIGC场景在台式机、轻薄本、全能本、游戏本等设备上都能落地应用,从而大大提高热门的日常生活、工作效率。
其中,基于OpenVINO PyTorch后端的方案,通过Pytorch API,可以让社区开源模型很好地运行在Intel客户端处理器、集成显卡、独立显卡和专用AI引擎之上。
比如说, Stable Diffusion的实现Automatic1111 WebUI,已经能够通过上述方式,在Intel处理器、显卡上运行FP16浮点精度的模型,支持文生图、图生图、局部修复等功能。
更进一步地,Intel通过模型优化,降低了模型对硬件资源的需求,进而提升了模型的推理速度,让社区开源模型能够很好地运行在PC上。
眼下,Intel 13代酷睿通过XPU加速、low-bit量化,以及其它软件层面的优化,可以让最高达160亿参数的大语言模型,通过BigDL-LLM框架运行在16GB及以上内存容量的个人电脑上。
已经验证过的模型包括但不限于:LLAMA/LLAMA2、ChatGLM/ChatGLM2、MPT、Falcon、MOSS、Baichuan、QWen、Dolly、RedPajama、StarCoder、Whisper等,并通过Transformers、LangChain API接口支持Windows、Linux的操作系统。
即将发布的代号Meteor Lake的酷睿Ultra系列,更会成为PC AI历史上的重要里程碑。
酷睿Ultra它将通过分离式模块架构,集成名为“VPU”的独立AI加速单元,为PC用户提供AI驱动的新功能、新应用,比如Adobe Premiere Pro中的自动重新构图、场景编辑检测等等,还有更高效的机器学习加速。
目前,Intel正与PC产业伙伴合作,加速AI加速应用的落地和普及,未来后续基带产品也会进一步扩展AI能力。
另一方面,Intel Arc锐炫显卡通过驱动和补丁更新,已经可以较好地支持Stable Diffusion,性能提升效果相当显著。
Tom's Hardware就分别测试了Arc A770 16GB、Arc A750,使用了Automatic1111 WebUI OpenVINO。
在此之前,Arc A770 16GB、Arc A450的性能相比RTX 4060落后在20%左右,如今分别大幅提升了54%、40%,对比RTX 4060能分别领先25%、6%。
要知道,它俩的游戏性能其实远不如RTX 4060,但如今AI效率却更高,足可见Intel的硬件性能和软件优化相当给力。
再看看AMD显卡的表现,就更加凸显Intel的进步了,RX 6000系列的效率依然低得令人发指,RX 6800都只有Arc A750的一半多一点点。
好文章,需要你的鼓励
浙江大学研究团队开发了ContextGen,这是首个能够同时精确控制多个对象位置和外观的AI图像生成系统。该系统通过情境布局锚定和身份一致性注意力两大创新机制,解决了传统AI在多对象场景中位置控制不准确和身份保持困难的问题,并创建了业界首个10万样本的专业训练数据集,在多项测试中超越现有技术。
谷歌推出升级版图像生成模型Nano Banana Pro,基于最新Gemini 3语言模型构建。新模型支持更高分辨率(2K/4K)、准确文本渲染、网络搜索功能,并提供专业级图像控制能力,包括摄像角度、场景光照、景深等。虽然质量更高但成本也相应增加,1080p图像费用为0.139美元。模型已集成到Gemini应用、NotebookLM等多个谷歌AI工具中,并通过API向开发者开放。
上海交通大学研究团队开发的SR-Scientist系统实现了人工智能在科学发现领域的重大突破。该系统能够像真正的科学家一样,从实验数据中自主发现数学公式,通过工具驱动的数据分析和长期优化机制,在四个科学领域的测试中比现有方法提高了6%-35%的精确度。这标志着AI从被动工具转变为主动科学发现者的重要里程碑。