近年来,GPU数据库因其强大的并行计算能力、较大的内存宽带和容量,使其可用性及优势越来越明显,国内互联网巨头、传统数据库企业等都纷纷布局GPU数据库市场。
2013年,上海雅捷信息技术股份有限公司(以下简称“雅捷”)研发团队开始基于GPU的高性能分布式数据库的研发,并积极实现数据库的国产化。2020年,雅捷与海光信息开始合作,探索具备自主知识产权的异构加速卡与数据库产品的结合。得益于海光完备的工具链和友好的跨平台迁移能力,在雅捷与海光工程师的通力合作下,仅两个月就完成了从国外平台向国内海光平台的迁移工作。经过不断的优化与改进,迁移后的数据库性能要优于同级的国外产品,基于GPU的高性能分布式数据库渐成雏形。
雅捷董事长、CEO郑学强介绍,“基于GPU的高性能分布式数据库”(以下简称DataTurbines)有三大优势:一是较强的创新性,随着AI技术的飞速发展,GPU数据库的创新价值将凸显;二是建立于国产海光的异构加速芯片之上,在系统的兼容性上具有较强的优势;三是从国家政策层面鼓励创新,“基于GPU的国产高性能分布式数据库”方案目前在国内尚无先例。
目前雅捷的DataTurbines数据库产品在金融和工业领域都取得了不错的成绩。在金融领域,DataTurbines被应用于金融行业的在线分析系统、交易风控系统及大数据数仓平台等核心业务领域,替代国外的一体机产品,不仅为企业省下了昂贵的系统授权维护费用,还引入了新硬件、新功能。在工业安全领域,复杂工业领域的安全仿真算法一直被几家国外老牌算法公司垄断。雅捷和高校实验室通力合作,通过自研工业安全算法,再结合DataTurbines数据库自身的分布式架构及GPU硬件加速能力,使得算法的运行效率和精度都大幅提升,不仅填补了复杂工业安全软件的空白,也打造了更安全高效的数字底座。
2022年,雅捷通过参加光合组织举办的“第二届AI解决方案大赛”,进一步加深了与海光的合作,完善了产品功能,并正式推出基于海光整机与雅捷DataTurbines的智能数据一体机(以下简称“一体机”)。一体机着眼于通过软硬件结合的方式,实现产品更好的优化,使用户体验更顺滑、更安全。
针对产品以后的发展,郑学强表示将着眼于两方面:一是在可信计算、数据安全方面与海光展开更加深入的合作,将海光的安全平台特性引入到DataTurbines项目中,打造新一代高性能多功能的金融数据一体机平台;二是适配国产自主的、先进的落地应用,比如,AI大模型、AI训练或是基于AIGC落地应用等,进一步深度去优化产品。
目前,随着AI大模型的发展,雅捷已开发出支持向量数据和结构化数据一体的多模态数据库版本,“在AI时代到来后,这将是生成式AI应用的重要基础平台。”郑学强表示。
好文章,需要你的鼓励
微软高级软件工程师Alice Vinogradova将自己用SAP ABAP语言编写的向量数据库ZVDB移植到了搭载Z80处理器的经典计算机Sinclair ZX Spectrum上。她发现ABAP(1983年)和Z80(1976年)几乎是同时代产物,都诞生于内存珍贵、每个字节都很重要的计算时代。通过应用Z80优化技术,尽管时钟频率相差857倍,但代码运行速度仅慢3-6倍。她认为这些老式优化技术具有普遍适用性,在现代硬件上依然有效。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
韩国电子巨头三星宣布收购美国西雅图数字健康技术公司Xealth,进一步扩大在健康领域的布局。Xealth专注于帮助医疗专业人员将数字健康技术整合到日常实践中,与70多家数字健康技术供应商合作,应用覆盖美国500多家医院。此次收购将推动三星向连接医疗保健平台转型,结合其在传感器技术和可穿戴设备方面的优势,完善Samsung Health平台功能。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。