近日,由IEEE可靠性协会主办的全球性专业会议ICPHM 2022 上,阿里云IoT平台数据分析团队发布名为An Integration of Spectrum Analysis and Attention- based Network for Condition Monitoring of Vibration Components论文,提出了SOTA级(行业领先)高精度故障诊断算法,刷新工业振动设备故障诊断精准度,显著提升设备运维效率。
作为工程学科的全球性专业会议,ICPHM已经连续举办了13届。在会议上发表的论文需要经过严格评审,文章录用且受邀会议演讲的比例不到30%,被收录的论文将在IEEE Explore上发表。
此次阿里云IoT发布的论文提出SOTA级振动故障诊断算法,对于减小非计划停机和降低运维成本有较大的价值。
在工业设备中由振动引起的故障,占所有故障的60%以上。而磨损、裂纹等轻微故障,往往宏观表征微弱,仅靠人工无法有效辨识,开展基于振动信号的状态监控可以有效跟踪并发现设备早期故障,减小非计划停机和运维成本,提高设备安全性和排故效率。
阿里云IoT的SOTA级算法通过融合领域知识和深度学习网络,相比直接使用原始时序信号或快速傅立叶变换得到的频谱,基于welch方法获得功率谱估计有助于抑制噪声,提升网络的特征提取效果;
基于一维双卷积网络和多头自注意力机制的轻量深度网络结构,可以融合多测点信号数据,相比现有的各种复杂多层网络,如ResNet等,在不降低模型识别效果的同时减小了模型大小,提升了计算效率。
此外,此套算法用一个模型适配多个场景,在轴承、齿轮等各类工况下都有出色的诊断效果。
IEEE专家评审意见认为,阿里云IoT故障诊断算法提出了一套端到端的诊断与状态识别流程,并且实验效果优越。
论文主要作者,阿里云IoT平台算法工程师陈曦表示,振动故障算法将与阿里云物联网平台、数字工厂等产品深度结合,为用户提供高精准度的预测性设备维护。
据了解,阿里云物联网平台已经服务近十万家企业,大量设备上云产生海量数据,为了帮助用户用好这些数据,阿里云IoT在数据分析平台上提供了包括故障诊断算法、生产过程分析等在内的五大类数据分析算法,API日调用量已达5O多万次。
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
南洋理工大学研究团队构建了Video-MMMU基准,通过300个专业教学视频和900道问题,评估AI模型从视频中学习知识的能力。研究发现人类专家知识增益达33.1%,而最先进的AI模型仅达15.6%,特别在知识适应新场景方面表现不佳。该研究揭示了当前AI在真正理解和应用知识方面的局限性,为未来AI教育应用发展指明了方向。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
清华大学等机构开发的SimpleVLA-RL框架突破了传统机器人依赖大量人类演示数据的局限,让机器人通过强化学习自主试错掌握技能。该方法在数据稀缺情况下将成功率从17.3%提升至91.7%,并在真实世界中验证有效,机器人还自主发现了"推切"等创新操作方式,为机器人智能化发展开辟新路径。