对于制造业来说,客户调查、产品质量报告、工厂设备日志等等都能产生大量数据,所以制造企业并不缺少数据,他们面临的问题是数据的来源与质量。数据的源头是哪里,来自于内部还是外部?数据的复杂程度如何?是否是专有数据?如果数据来自于SAP和主机,数据的名称和结构会很复杂,与其他数据源的整合成本会很高且耗时很长,并且访问和使用不同类型的数据需要不同的方法等等。
如果上述问题解决了,即确定了适合的数据集之后,制造企业就可以开始利用分析工具或机器学习、AI预测模型等方式有效地获取洞察。这些技术能够根据当前趋势对未来的结果进行更准确的预测,并根据未来的潜在情况进行更好的规划,让决策更加智能。
设备综合效率(OEE)的分析
要评估生产设备的运行情况,设备综合效率(OEE)是最广泛使用的指标。该指标可以用来监测单台机器、生产线、甚至整个工厂的绩效。OEE本质上是通过三大关键因素来衡量生产制造的效率——可用性、效能、质量。
· 可用性是指设备运行和可使用的频率
· 效能关注运营的效率
· 质量是指生产出多少合规的产品
计算OEE时,需要重点考虑的因素包括:材料和零部件的备货情况、维护和修理导致的宕机时间、人员引发的生产延迟,以及产品不良率等等。生产过程中的任何缺陷都可能会导致严重的生产延误,并因为返工或报废而导致成本增加。
梅赛德斯-奔驰公司在生产过程采用了OEE分析,在装配线上安装车轮吊耳时,对扭矩力进行测量好监测,确保安全和合规。
OEE分析还能帮助制造商找到改进的机会。例如,梅赛德斯-奔驰正在与微软合作,通过云计算获取更多的数据用于分析。梅赛德斯-奔驰MO360战略项目就是通过监测OEE来找到效率不高的根本原因,并制定战略来提高绩效。该项目的目标包括:
· 到2025年将汽车生产率提高20%
· 物流团队以更快的速度解决供应链瓶颈问题
· 动态分配资源,优先考虑低排放和高端豪华汽车
· 生产团队可以在任何设备上进行自助服务并获取分析图表
· 通过数据分析工具监测和预测碳排放、能源和水的使用、废物管理等等
OEE分析可以为制造商提供改善运营的洞见,并帮助就如何提高生产力和降低成本做出明智的决定。通过长期跟踪OEE,制造商可以确定需要改进的地方,并制定策略提高效率和减少浪费。通过OEE分析,制造商可以让生产设备最高效率地运行,在当今快速变化的全球市场中保持竞争力。
Qlik与微软、Databricks等领先的行业解决方案提供商建立有合作伙伴关系,可以帮助制造业客户更好地利用数据,让企业变得更具韧性、更有效率、更可持续。
好文章,需要你的鼓励
微软研究院推出VIBEVOICE,这是一种革命性的AI语音合成技术,能够一次性生成长达90分钟的多人对话音频。
成均馆大学团队开发出选择性对比学习新方法,让机器通过观察人类交互场景学会识别物体功能部位。该技术突破传统局限,采用动态学习策略,能根据信息质量调整学习方式,在多个数据集上显著超越现有方法,为机器人、自动驾驶等领域的智能交互应用奠定重要基础。
微软与三星达成合作,将Copilot人工智能助手集成到三星的智能电视和显示器产品中。用户可以通过语音或遥控器直接与Copilot交互,获得智能问答、内容推荐、设备控制等服务。这一合作标志着AI助手从传统计算设备向家庭娱乐设备的进一步扩展,为用户提供更加智能化的观看体验。
新加坡南洋理工大学研究团队开发出EgoTwin系统,这是首个能够根据文字描述同时生成第一人称视频和匹配人体动作的AI框架。该系统通过创新的头部中心动作表示方法和因果交互机制,解决了视角对齐和动作画面同步的核心难题,在17万样本的真实数据集上实现了显著性能提升,为VR内容创作、影视制作等领域提供了新的技术可能。