近日,全球顶级音频技术会议 ICASSP 2022 公布了论文入选名单。网易云信音频实验室论文——《一种针对实时通信的基于神经网络的啸叫检测方法》(A Neural Network-based Howling Detection Method for Real-time Communication Applications)被大会接收,并受邀于今年5月在会议上向学术和工业界做研究报告。
这是网易云信音频实验室创新成果连续两年受到世界顶级学术会议认可。

ICASSP(International Conference on Acoustics, Speech and Signal Processing)即国际声学、语音与信号处理会议,是IEEE信号处理协会主办的全球最大、最全面的音频领域顶级会议,具有权威、广泛的学界及工业界影响力,在国际上享有盛誉。

随着AI的迅速发展,深度神经网络在声音场景分类(ASC, Acoustic Scene Classification)和声音事件检测(AED, Acoustic Event Detection)任务中的应用已越来越多,并且明显优于传统的信号处理方法。网易云信音频实验室本次研究则是将AI技术应用于啸叫检测中,该论文为AI啸叫检测领域在全球范围内首个公开发表的研究成果。
当扬声器和话筒之间的声学耦合产生正反馈时,啸叫便会产生。传统的公共广播系统和助听器设备利用传统的啸叫功能检测和抑制啸叫。然而,实时通信(RTC)中的传统啸叫功能会受到非线性和不确定性的影响,如各种扬声器/麦克风响应、多种非线性音频处理、不稳定的网络传输抖动、声学路径变化和环境影响等。在啸叫检测中,使用特定时间-频率特征的信号处理方法对RTC场景是无效的。
云信音频实验室提出了一种基于卷积递归神经网络(CRNN)的方法,用于RTC应用中的啸叫检测,实现了出色的准确性和低误报率。该篇文章使用不同的移动设备收集和标记啸叫数据集用于模型训练,并选择对数梅尔谱作为输入特征,实现了 89.46% 的检测率和 0.40% 的误报率。 此外,所提出方法的模型大小仅为 121kB,并且已在实时运行的移动设备中实现。
作为行业内首批音视频 AI 实验室之一,网易云信音频实验室不断探索“AI+音频”前沿技术方向,连续取得业界权威认可。2021年,实验室在 AI 音频降噪和 AI 音乐检测的研究成果被第 50 届国际噪声控制工程会议(INTER-NOISE 2021)收录,自建的国内行业中首个 AI 音乐检测模型受到了高度关注。本次AI啸叫检测成果被 ICASSP 2022接收,再次证明了网易云信在音频技术领域的顶尖研究实力。
未来,网易云信音频实验室将持续引领新技术发展方向,并将先进的算法模型应用于产品和场景中,为全球用户打造极致听觉体验。
好文章,需要你的鼓励
微软宣布未来四年将在阿联酋投资152亿美元,包括首次向该国运输最先进的英伟达GPU芯片。美国已授权微软向阿联酋出口英伟达芯片,使该国成为美国出口管制外交的试验场和地区AI影响力锚点。这笔投资包括2023年以来的73亿美元支出和2026-2029年的79亿美元计划投入,涵盖数据中心建设、人才培训和AI基础设施扩展,目标到2027年培训100万当地居民。
特拉维夫大学研究团队开发了SAEdit方法,使用稀疏自编码器实现精确的AI图像编辑控制。该技术能像调节音量一样精确控制编辑强度,实现从微笑到大笑的连续调节,同时确保编辑的高度解耦性,避免意外修改其他图像元素。方法具有出色的通用性,可应用于多个AI图像生成平台,为图像编辑领域带来重大突破。
OpenAI与亚马逊云服务签署七年380亿美元协议,在微软Azure之外增加另一个超大规模云服务商来满足其不断增长的AI计算需求。该协议将让OpenAI立即获得AWS EC2 UltraServers访问权限,计算能力将在未来七年内扩展至数千万个CPU。AWS还将为OpenAI构建基于英伟达Blackwell芯片的定制基础设施。尽管签署了这一大额协议,OpenAI仍将继续依赖微软Azure作为其主要云计算合作伙伴。
Code4Me V2是荷兰代尔夫特理工大学开发的开源AI编程助手平台,专为学术研究设计。它解决了商业AI编程工具透明度不足、无法获取交互数据的问题,提供了模块化架构和完整的数据收集框架。该工具性能可媲美商业产品,代码补全延迟仅186.31毫秒,同时支持内联补全和聊天功能。通过透明、可控制、可扩展的设计,为AI辅助编程研究提供了重要的基础设施平台。